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Abstract

BACKGROUND: Accurate detection of weeds and estimation of their coverage is crucial for implementing precision herbicide
applications. Deep learning (DL) techniques are typically used for weed detection and coverage estimation by analyzing infor-
mation at the pixel or individual plant level, which requires a substantial amount of annotated data for training. This study aims
to evaluate the effectiveness of using image-classification neural networks (NNs) for detecting and estimatingweed coverage in
bermudagrass turf.

RESULTS: Weed-detection NNs, including DenseNet, GoogLeNet and ResNet, exhibited high overall accuracy and F1 scores
(≥0.971) throughout the k-fold cross-validation. DenseNet outperformed GoogLeNet and ResNet with the highest overall accu-
racy and F1 scores (0.977). Among the evaluated NNs, DenseNet showed the highest overall accuracy and F1 scores (0.996) in the
validation and testing data sets for estimating weed coverage. The inference speed of ResNet was similar to that of GoogLeNet
but noticeably faster than DenseNet. ResNet was the most efficient and accurate deep convolution neural network for weed
detection and coverage estimation.

CONCLUSION: These results demonstrated that the developed NNs could effectively detect weeds and estimate their coverage
in bermudagrass turf, allowing calculation of the herbicide requirements for variable-rate herbicide applications. The proposed
method can be employed in a machine vision-based autonomous site-specific spraying system of smart sprayers.
© 2024 Society of Chemical Industry.
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1 INTRODUCTION
For centuries, turf has been an integrated part of the landscape,
offering aesthetic, environmental and social benefits. It can be
found in various settings, from residential yards to public parks.1

Weeds are unwanted plants that grow on turf and compete with
turfgrass for nutrients, water and sunlight, resulting in diminished
visual appeal, impaired turf health and a depreciation in property
value.2,3 Herbicides are typically broadcast-applied uniformly
across the entire field despite the patchy distribution nature of
weeds.4 This approach incurs high input costs and may pollute
the environment.5,6 In Europe, the cost of herbicides represents
around 40% of the total expense for all chemicals used in agricul-
ture.7,8 Both economic and environmental concerns have led to
legal regulations regarding herbicide usage in several coun-
tries.9,10 For instance, the European Union introduced measures
for reducing herbicide applications and encouraged spot-
spraying in a dosage strictly necessary based on the degree of
weed infestation.7 Precision herbicide application refers to the
intentional application of herbicides to specific areas where
weeds are present, aiming to minimize herbicide usage and
achieve effective weed control.11,12 This approach can substan-
tially reduce the environmental impact and economic cost associ-
ated with weed management.13,14

Precision herbicide application requires accurate weed detec-
tion and localization.15–17 Image-processing techniques have
been explored to detect and distinguish weeds by analyzing their
visual characteristics, including color,18,19 morphology20 and tex-
ture.21 Moreover, various studies have further expanded the appli-
cation of machine vision methods for weed detection in
turfgrasses. For example, Parra et al. implemented an edge-
detectionmethod to identify weeds in turfgrass.22 They evaluated
12 edge-detection filters and the analysis revealed that sharpen-
ing filters combined with a minimum aggregation technique
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yielded themost effective results. Ukrit et al. employed two weed-
detection techniques, Bayes classifier and morphology opera-
tions, in turfgrass, achieving accuracies of 77.70–82.60% and
89.83–91.11%, respectively.23 In another study, the methodology
was enhanced by integrating texture and color features and
employing a support vector machine in place of the Bayesian clas-
sifier, resulting in a significant improvement in weed-detection
accuracy. The precision of the correct spray and spark rates
reached 96.87% and 97.21%, respectively.24 Nonetheless, these
methods have limitations because crops and weeds may have
similar morphological features.2,25

In recent years, deep learning (DL) techniques, particularly deep
convolution neural networks (DCNNs), have shown remarkable
progress in image classification, object detection and instance
segmentation.26,27 DCNNs can learn representations automati-
cally from raw data, eliminating the need for handcrafted rules
or human domain knowledge.15,28 DL has been particularly effec-
tive in object detection, where it is used to identify and locate
objects within an image.28 This capability has been transformative
for applications requiring precise visual recognition. Instance seg-
mentation extends beyond detection by not only locating
objects, but also delineating their boundaries at the pixel level,
enabling detailed understanding of the scene, crucial for fields
that demand high levels of accuracy in visual analysis.29 Overall,
the ability of DL models to learn complex representations from
data has made them a powerful tool for a wide range of applica-
tions.14 In agriculture, DL techniques have been widely applied
in various aspects of modern agriculture, including crop yield
prediction,29,30 plant disease detection,31,32 crop/weed classifica-
tion33,34 and livestock monitoring.35,36 Nonetheless, implement-
ing DL in agriculture, particularly for weed detection, has
encountered obstacles because of the lack of abundant labeled
data for supervised training. To address this issue, Hu et al. intro-
duced a novel approach that combines image synthesis and
semi-supervised learning (SSL) to train site-specific weed-
detection models.37 By utilizing 500 labeled images along with
1200 synthesized images for training and testing, this method
enhanced the model's performance. Specifically, when trained
with pseudo-labeled and synthetic images, the models exhibited
a notable increase in mean average precision, with scores improv-
ing from 44.9 to 46.0 across three SSL iterations. These applica-
tions have shown great potential in increasing agricultural
productivity, enhancing resource utilization and promoting sus-
tainable development in the agricultural industry.38

Previous studies demonstrated the feasibility of using DCNNs
for detecting and discriminating weeds growing in turf.11,14,39,40

For example, Yu et al. reported that VGGNet achieved high F1
scores (≥0.93) in detecting crabgrass (Digitaria spp.), dallisgrass
(Paspalum dilatatum Poir.), doveweed [Murdannia nudiflora (L.)
Brenan], and tropical signalgrass [Urochloa distachya
(L.) T.Q. Nguyen] growing in bermudagrass turf.40 Purple nut-
sedge (Cyperus rotundus L.) is known for its aggressive growth
and resilience, making it a formidable weed in both ornamental
and sports turf.41 Several researchers have explored DL methods
to effectively target this persistent species. Yu et al. compared five
image-classification NNs—DenseNet, EfficientNet, ResNet,
RegNet and VGGNet—to detect common dandelion (Taraxacum
officinaleWeb.), dallisgrass, purple nutsedge and white clover (Tri-
folium repens L.) growing in bermudagrass turf, and found that
VGGNet effectively detected and discriminated common dande-
lion, dallisgrass, purple nutsedge and white clover, whereas Den-
seNet, EfficientNetV2 and RegNet reliably detected and

discriminated dallisgrass and purple nutsedge.42 Chen et al. eval-
uated SSL methods to train image-classification NNs for detecting
purple nutsedge and green kyllinga (Kyllinga brevifolia) in turf-
grass.43 The authors reported that networks utilizing the FixMatch
SSL strategy and trained with input images of 240 × 240 pixels
achieved the highest F1 scores, reaching 98.1% with 100 labeled
images and 98.2% with 200 labeled images.
Weed-coverage estimation is an essential input for implement-

ing site-specific herbicide treatment, allowing for the calculation
of herbicide requirements and the overall cost of weed manage-
ment. Moreover, autonomous and accurate weed-coverage esti-
mation could be used for variable-rate herbicide applications. At
present, weed coverage is estimated by manual visual estimation.
However, manual scouting of large fields is time-consuming and
labor-intensive. Asad et al. employedmaximum likelihood classifi-
cation and DCNNs to detect weed density in canola (Brassica
napus L.) fields.44 The methodology involves segmenting fore-
ground and background based on pixel values and manually
labeling weed pixels. The labeled data are then used to train
instance segmentation models to accurately estimate weed den-
sity. The ResNet-50-based SegNet model yielded the best results,
with a mean intersection over a union (IoU) value of 0.8288 and a
frequency-weighted IoU value of 0.9869. Mishra et al. utilized the
Inception-v4 architecture, a DCNN, for detecting weed density in
soybean (Glycine max L.) fields.45 The weed density area is deter-
mined through vegetation segmentation.
DL techniques, such as image classification, object detection

and instance segmentation NNs, are commonly employed in the
domain of weed detection and discrimination.38,46 Among these
techniques, image classification involves the assignment of a pre-
defined class label to an input image, focusing on the entire
image without considering object-specific locations. Object
detection, on the other hand, entails the identification of objects
within an image, accompanied by placing bounding boxes and
corresponding class labels. This approach effectively identifies
multiple objects of varying classes, providing valuable location
information. Instance segmentation aims to label each pixel
within an image, resulting in segmentation of the image into dis-
tinct regions representing different object classes. Traditionally,
weed-coverage estimation has necessitated pixel-level or individ-
ual plant-level analysis.25 However, the inability of image classifi-
cation to pinpoint object locations within an image renders it
unsuitable for tasks demanding precise object positioning and
pixel-level classification. Previous studies have predominantly
relied on object detection and instance segmentation for weed-
coverage estimation by analyzing pixel or individual plant-level
information.25 This methodology entails the classification of each
image pixel as either a weed or a non-weed, requiring a substan-
tial amount of annotated data for training, which can be both
time-consuming and labor-intensive. Furthermore, the precision
of the classification can be affected by variations in lighting and
image quality, leading to potential misclassifications. A smart
sprayer typically applies herbicides onto a specific spray zone
rather than an individual pixel. This presents a challenge in trans-
lating the results obtained from pixel-level analysis to herbicide
sprayers, because the pixel-based results are not directly applica-
ble. To our knowledge, autonomous weed-coverage estimation in
turf has not been previously reported. In the current research
work, we proposed a novel integrated approach grounded in
image-classification NNs for estimating weed coverage, extend-
ing the applicability of this approach beyond its established uses
in the field. The objectives of this study were to: (i) evaluate the
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performance of image-classification NNs for detecting purple nut-
sedge growing in bermudagrass turf, and (ii) estimate its coverage
in a grid framework for site-specific herbicide application.

2 MATERIALS AND METHODS
2.1 Overview
Three image-classification NNs, DenseNet,47 GoogLeNet48 and
ResNet,49 were selected to evaluate the feasibility of using
image-classification NNs for detecting weeds growing in bermu-
dagrass turf or estimating weed coverage in a grid framework to
generate the herbicide applicationmap. DenseNet (Dense Convo-
lutional Network) is a DCNN that aims to address the vanishing
gradient issue by employing feed-forward connections between
each layer. This architecture enhances feature propagation and
enables feature reuse through dense blocks, allowing DenseNet
to achieve state-of-the-art accuracy with fewer parameters than
other DL models. In addition, DenseNet is easy to implement
and can be trained efficiently. GoogLeNet is a DL architecture
developed by Google that introduced the concept of inception
modules. These modules are made up of multiple layers with dif-
ferent filter sizes and stride lengths, which are combined in vari-
ous ways to produce a rich set of features at different spatial
resolutions. GoogLeNet also uses global average pooling and aux-
iliary classifiers to improve performance and reduce overfitting.
The architecture has been shown to perform well on image-
classification tasks, making it an efficient and practical choice for
many applications. ResNet utilizes a novel design called residual
blocks, which allows for the reuse of learned features and enables
the training of very deep NNs. In a residual block, the input to a
layer is added to the output of that layer after passing through
a non-linear activation function. This creates a shortcut connec-
tion that enables the gradient signal to bypass one or more layers
and flow directly to the earlier layers, thereby preventing the van-
ishing gradient issue. These image-classification NNs were utilized
to detect weeds and estimate their coverage in bermudagrass
turf. This approach extends the applicability of image classifica-
tion beyond its established uses in the field, aiming to provide a
more efficient and less resource-intensive solution.

2.2 Image acquisition
Images of purple nutsedge growing in bermudagrass turf were
acquired in spring 2021 using a digital camera (Panasonic®
DMC-ZS110, Xiamen, Fujian, China) with an original dimension
of 2736 × 1824 pixels. The bermudagrass turf was naturally
infested with purple nutsedge. The training images of purple nut-
sedge were captured at sod farms in Jiangning District, Nanjing,
Jiangsu, China (31.95°N, 118.85°E), whereas the testing images
were captured at sod farms in Shuyang, Jiangsu, China (34.12°N,
118.79°E). To increase the diversity of the training data set and
improve the robustness of the DCNN, the training and testing
images were captured at varying daytimes and weather condi-
tions. All original images captured via the digital camera were
cropped into grid cells to facilitate the tasks of weed detection
and coverage estimation. Because of the limited presence of
weeds in many original images, cropping the original images into
grid cells results in only a small number of grid images containing
weeds. Specifically, more than 600 original images were utilized
to create a sufficient quantity of grid images containing weeds.

2.3 Training and testing
The image-classification NNs were trained and evaluated using
the k-fold cross-validation methodology to ensure a
comprehensive and thorough performance assessment. The data
set was partitioned into five non-overlapping subsets in the k-fold
cross-validation procedure (with k = 5 in this study). During each
iteration, four subsets were utilized to train the image-
classification NNs, whereas the remaining subset was used for val-
idation. This process was repeated five times, with each subset
serving as the validation data set exactly once. Through system-
atic rotation of the subsets, the NNs were thoroughly trained
and assessed across diverse data configurations.
To constitute the training data set of the weed-detection NNs,

images containing purple nutsedge growing in bermudagrass
turf were cropped into 24 sub-images (4 rows × 6 columns, 24 grid
cells) with a resolution of 456 × 456 pixels using a custom pro-
gram developed with Python language (Fig. 1). A total of 8000
sub-images, with 4000 sub-images containing purple nutsedge
growing in bermudagrass (true positive images) and 4000 sub-
images containing bermudagrass only (true negative images),
were divided into five distinct folds, resulting in each fold contain-
ing 1600 sub-images (800 images for each category). In every iter-
ation, a training data set was created by amalgamating four
subsets, resulting in a total of 6400 images. Simultaneously, the
fifth subset (consisting of 1600 images) was reserved for valida-
tion. To constitute the testing data set of the weed-detection
NNs, a total of 500 sub-images containing purple nutsedge grow-
ing in bermudagrass were randomly selected and used as the true
positive images, whereas a total of 500 sub-images containing
bermudagrass only were randomly selected and used as true neg-
ative images.
To constitute the training data set of the weed-coverage estima-

tion NNs, images containing purple nutsedge growing in bermu-
dagrass turf were cropped into 96 sub-images (8 rows × 12
columns, 96 grid cells) with a resolution of 228 × 228 pixels using
a custom program developed with Python language (Fig. 1). A
total of 8000 sub-images, with 4000 sub-images containing pur-
ple nutsedge growing in bermudagrass (true positive images)
and 4000 sub-images containing bermudagrass only (true nega-
tive images), were divided into five distinct folds, resulting in each
fold containing 1600 sub-images (800 images for each category).
In every iteration, a training data set was created by amalgamat-
ing four subsets, resulting in a total of 6400 images. Simulta-
neously, the fifth subset (consisting of 1600 images) was
reserved for validation. To constitute the testing data set of the
weed-coverage estimation NNs, a total of 500 sub-images con-
taining purple nutsedge growing in bermudagrass were ran-
domly selected and used as the true positive images, whereas a
total of 500 sub-images containing bermudagrass only were ran-
domly selected and used as true negative images.
Moreover, additional experiments were conducted to train the

image-classification NNs with the entire data set to fully substan-
tiate the effectiveness of the proposed method. The aforemen-
tioned sub-images were combined and used as the training and
testing data sets for weed-detection NNs andweed-coverage esti-
mation NNs, respectively.
The image-classification NNswere trained and tested in PyTorch

(version 1.8.1) open-source DL environment (Facebook, San Jose,
CA, USA) with an NVIDIA GeForce RTX 2080 Ti graphic processing
unit (NVIDIA; Santa Clara, CA, USA). Transfer learning is a machine-
learning technique that leverages a pre-trained model as a
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foundation for training a new model on a related but different
task. The pre-trained model typically learns from a vast and varied
data set and captures general features beneficial for resolving var-
ious challenges. The image-classification NNs evaluated in this
study were pre-trained using the ImageNet data set utilizing
transfer learning to initialize the biases and weights.50,51 The
default hyperparameter values were utilized and implemented
to ensure a fair comparison of the evaluated image-classification
NNs (Table 1).
Precision, recall, overall accuracy and F1 score are metrics

commonly used to assess the efficacy of DL models. These
metrics are calculated based on the elements of a confusion
matrix. The binary classification confusion matrix contains
four crucial elements, namely true positives (TP), true nega-
tives (TN), false positives (FP) and false negatives (FN),
which form the basis for evaluating the performance of
image-classification NNs.

Precision measures the proportion of TP predictions made by
the NN out of all the positive predictions. The calculation of preci-
sion involves the following equation52:

Precision=
TP

TP+FP
ð1Þ

Recall measures the proportion of true positive predictions
made by the NN out of all actual positive cases in the data set.
The calculation of recall involves the following equation52:

Recall=
TP

TP+FN
ð2Þ

Overall accuracy measures the proportion of correct predictions
made by the NN over all predictions. The calculation of overall
accuracy involves the following equation52:

Figure 1. The originally captured image was cropped into 24 weed-detection cells (cyan lines) and 96 weed-coverage estimation cells (white lines).

TABLE 1. Hyperparameters used for training the image-classification neural networks

Deep learning architecture Optimizer Base learning rate Learning rate policy Batch size Training epochs

DenseNet SGD 0.001 LambdaLR 64 60
GoogLeNet Adam 0.0003 StepLR 64 60
ResNet Adam 0.0001 StepLR 64 60

Abbreviations: SGD, stochastic gradient descent.
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Overall accuracy=
TP+TN

TP+FP+FN+TN
ð3Þ

The F1 score is a composite metric that balances precision and
recall. It is computed as the harmonic mean of these two mea-
sures, expressed as follows52:

F1 score=
2×precision×recall
precision+recall

ð4Þ

Frames per second (FPS) is a measure of image processing algo-
rithm speed that indicates the number of frames an algorithm can
process per second. In the context of DL, a higher FPS corresponds
to faster inference speeds for NNs.

2.4 Weed detection and coverage estimation
A custom software application was developed to incorporate
OpenCV-Python (version 4.7.0.68) with the trained image-
classification NNs for weed detection and coverage estimation
in bermudagrass turf. The software generated grid cells on the
input images and determined the presence of weeds in these grid
cells. For weed detection, the custom software cropped each
input image (2736 × 1824 pixels) to 24 equal-sized weed-
detection cells (WDCs) with a resolution of 456 × 456 pixels. The
trained weed-detection NNs were employed to detect and locate
the WDCs containing weeds. The WDC was classified and marked
as the spraying zone if the inference indicated it contained weeds.
After weed detection and localization, WDC containing weeds

(the corresponding spraying zone) were further divided into four
equal-sized weed-coverage estimation cells (WCECs) with a reso-
lution of 228 × 228 pixels (2 rows × 2 columns). The trained
weed-coverage estimation NNs were employed to detect the
presence of weeds in each WCEC. The percentage of weed cover-
age was calculated based on the number of WCECs containing
weeds: 25% (one of four cells contained weeds), 50% (two of four
cells contained weeds), 75% (three of four cells contained weeds)
and 100% (all four cells contained weeds). Figure 2 outlines the
sequence diagram of weed detection and coverage estimation.

3 RESULTS
3.1 Performance of weed-detection NNs
3.1.1 k-Fold cross-validation performance
In this study, we employed the fivefold cross-validation method-
ology to rigorously assess the performance of the weed-detection
NNs. The evaluation metrics, including precision, recall, overall
accuracy and F1 score, were computed across five different folds

(k1 to k5) to ensure the robustness and reliability of our DL
model's performance analysis.
No obvious differences were observed across all folds among

the weed-detection NNs for detecting weeds growing in bermu-
dagrass turf (Table 2). For discriminating the WDCs containing
weeds with the cells containing bermudagrass turf exclusively,
DenseNet and GoogLeNet had overall accuracy and F1 score
above 0.976 throughout the k-fold cross-validation. The perfor-
mances of weed-detection NNs slightly declined in the testing
data sets, but the overall accuracy and F1 score never fell below
0.973. DenseNet outperformed GoogLeNet and ResNet with the
highest overall accuracy and F1 scores (≥0.980, k3/k5) in the vali-
dation and testing data sets.

3.1.2 Performance evaluation trained on the entire data set
There were no significant distinctions noted in the performance of
various NNs for weed detection in bermudagrass turf, as illus-
trated in Table 3. For discriminating the WDCs containing weeds
with the cells containing bermudagrass turf exclusively, all three
NNs, DenseNet, GoogLeNet and ResNet, had overall accuracy
and F1 score above 0.976 in the validation data sets. The perfor-
mances of weed-detection NNs slightly declined in the testing
data sets, but the overall accuracy and F1 score never fell below
0.972. DenseNet outperformed GoogLeNet and ResNet with the
highest overall accuracy and F1 scores (≥0.977) in the validation
and testing data sets.

3.2 Performance of weed-coverage estimation NNs
3.2.1 k-Fold cross-validation performance
All weed-coverage estimation NNs exhibited excellent overall
accuracy and F1 scores with high precision and recall values across
the entirety of the k-fold cross-validation (≥0.990) for discriminat-
ing the WCECs containing weeds and the cells containing bermu-
dagrass turfgrass exclusively (Table 4). DenseNet, GoogLeNet and
ResNet generally demonstrated similar performance levels on
both the validation and testing data sets. The DenseNet weed-
coverage estimation NNs showed the highest overall accuracy
and F1 scores in the validation and testing data sets (0.997, k2).
The stability of these metrics across different folds underscores

the reliability and generalization capability of the NNs evaluated
in this study. The consistently high precision, recall, overall accu-
racy and F1 score values indicate that the trained NNs can effec-
tively detect and discriminate grid cells containing the purple
nutsedge and the bermudagrass turf. In conclusion, the results
obtained from the k-fold cross-validation demonstrated the effec-
tiveness and consistency of our DL models in the tasks of weed
detection and coverage estimation.

Figure 2. Flow diagram illustrating the sequence of weed detection and coverage estimation.
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3.2.2 Performance evaluation trained on the entire data set
In the validation data sets, NNs for estimating weed coverage
achieved outstanding overall accuracy and F1 scores (≥0.990),
along with notable precision and recall values (Table 5). Across
both validation and testing data sets, DenseNet, GoogLeNet and
ResNet demonstrated comparable effectiveness for discriminat-
ing the WCECs containing weeds and the cells containing bermu-
dagrass turfgrass exclusively. The DenseNet weed-coverage

estimation NN showed the highest overall accuracy and F1 scores
at 0.996, followed closely by ResNet with scores of 0.994 in the
testing data sets.

3.3 Weed mapping and coverage estimation
The results of weed detection and mapping using the custom
software integrated with the weed-detection NNs are presented
in Fig. 3. As mentioned in Section 3.2.2, each input image was

TABLE 2. k-Fold cross-validation performance metrics for weed-detection neural networks

Deep learning
architecture

k-fold cross-
validation Label

Validation data set Testing data set

Precision Recall
Overall
accuracy

F1
score Precision Recall

Overall
accuracy

F1
score

DenseNet k1 Turf 0.969 0.984 0.976 0.976 0.976 0.978 0.977 0.977
Weed 0.984 0.969 0.976 0.976 0.977 0.976 0.977 0.976

k2 Turf 0.966 0.994 0.979 0.980 0.967 0.990 0.978 0.978
Weed 0.994 0.965 0.979 0.979 0.990 0.966 0.978 0.978

k3 Turf 0.977 0.988 0.982 0.982 0.978 0.982 0.980 0.980
Weed 0.987 0.976 0.982 0.981 0.982 0.978 0.980 0.980

k4 Turf 0.967 0.990 0.978 0.978 0.969 0.985 0.977 0.977
Weed 0.990 0.966 0.978 0.978 0.985 0.969 0.977 0.977

k5 Turf 0.983 0.984 0.983 0.983 0.978 0.982 0.980 0.980
Weed 0.984 0.982 0.983 0.983 0.982 0.978 0.980 0.980

GoogLeNet k1 Turf 0.990 0.965 0.978 0.977 0.992 0.960 0.976 0.976
Weed 0.966 0.990 0.978 0.978 0.961 0.992 0.976 0.976

k2 Turf 0.966 0.996 0.981 0.981 0.967 0.990 0.978 0.978
Weed 0.996 0.965 0.981 0.980 0.990 0.966 0.978 0.978

k3 Turf 0.982 0.979 0.981 0.980 0.984 0.971 0.978 0.977
Weed 0.979 0.982 0.981 0.980 0.972 0.984 0.978 0.978

k4 Turf 0.979 0.982 0.981 0.980 0.979 0.980 0.979 0.979
Weed 0.982 0.979 0.981 0.980 0.980 0.979 0.979 0.979

k5 Turf 0.990 0.964 0.977 0.977 0.987 0.965 0.976 0.976
Weed 0.965 0.990 0.977 0.977 0.966 0.988 0.976 0.977

ResNet k1 Turf 0.953 0.991 0.971 0.972 0.959 0.989 0.973 0.974
Weed 0.991 0.951 0.971 0.971 0.988 0.958 0.973 0.973

k2 Turf 0.964 0.991 0.977 0.977 0.965 0.988 0.976 0.976
Weed 0.991 0.962 0.977 0.976 0.987 0.964 0.976 0.975

k3 Turf 0.964 0.994 0.978 0.979 0.962 0.994 0.978 0.978
Weed 0.994 0.962 0.978 0.978 0.994 0.961 0.978 0.977

k4 Turf 0.966 0.986 0.976 0.976 0.973 0.979 0.976 0.976
Weed 0.986 0.965 0.976 0.975 0.979 0.972 0.976 0.975

k5 Turf 0.974 0.990 0.982 0.982 0.974 0.984 0.979 0.979
Weed 0.990 0.974 0.982 0.982 0.984 0.974 0.979 0.979

TABLE 3. Performance evaluation of weed-detection neural networks trained on the entire data set

Deep learning architecture Label

Validation data set Testing data set

Precision Recall Overall accuracy F1 score Precision Recall Overall accuracy F1 score

DenseNet Turf 0.980 0.986 0.983 0.983 0.974 0.980 0.977 0.977
Weed 0.986 0.980 0.983 0.983 0.980 0.974 0.977 0.977

GoogLeNet Turf 0.988 0.964 0.976 0.976 0.986 0.958 0.972 0.972
Weed 0.965 0.988 0.976 0.976 0.959 0.986 0.972 0.972

ResNet Turf 0.982 0.984 0.983 0.983 0.972 0.972 0.972 0.972
Weed 0.984 0.982 0.983 0.983 0.972 0.972 0.972 0.972
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divided into 24 WDCs. A total of 15 cells were identified as con-
taining weeds and were marked with a red border; the remaining
8 cells exclusively contained bermudagrass turf.
Afterward, the exact WDCs on the input image containing

weeds were further divided into four WCECs, as shown in Fig. 4.
The trained weed-coverage estimation NNs were utilized to
detect the presence or absence of weeds within each WCEC. As
an example, in the WDC (spraying zone) located at the fourth col-
umn of the first row, two WCECs were detected to contain weeds,

resulting in a weed-coverage percentage of 50% for this particular
area (Fig. 5).
As shown in Fig. 5, the proposedmethod in this study effectively

detected weeds and estimated their coverage growing in bermu-
dagrass turf with the generation of weed-coverage mapping. A
total of 3, 2, 6 and 4 of 15 spraying cells had a weed coverage of
25%, 50%, 75%, and 100%, respectively. Precision herbicide appli-
cation can be achieved by directing the nozzle to the specific
spraying cell where the weeds are present and adjusting the

TABLE 4. k-Fold cross-validation performance metrics for weed-coverage estimation neural networks

Deep learning
architecture

k-fold cross-
validation Label

Validation data set Testing data set

Precision Recall
Overall
accuracy

F1
score Precision Recall

Overall
accuracy

F1
score

DenseNet k1 Turf 0.999 0.996 0.998 0.997 0.995 0.995 0.995 0.995
Weed 0.996 0.999 0.998 0.997 0.995 0.995 0.995 0.995

k2 Turf 0.996 1.000 0.998 0.998 0.995 0.999 0.997 0.997
Weed 1.000 0.996 0.998 0.998 0.999 0.995 0.997 0.997

k3 Turf 0.999 0.994 0.996 0.996 0.996 0.996 0.996 0.996
Weed 0.994 0.999 0.996 0.996 0.996 0.996 0.996 0.996

k4 Turf 0.997 0.994 0.996 0.995 0.995 0.998 0.996 0.996
Weed 0.994 0.998 0.996 0.996 0.997 0.995 0.996 0.996

k5 Turf 0.997 0.995 0.996 0.996 0.994 0.996 0.995 0.995
Weed 0.995 0.998 0.996 0.996 0.996 0.994 0.995 0.995

GoogLeNet k1 Turf 0.996 0.995 0.996 0.995 0.990 0.994 0.992 0.992
Weed 0.995 0.996 0.996 0.995 0.994 0.990 0.992 0.992

k2 Turf 0.991 0.995 0.993 0.993 0.991 0.994 0.992 0.992
Weed 0.995 0.991 0.993 0.993 0.994 0.991 0.992 0.992

k3 Turf 0.995 0.989 0.992 0.992 0.989 0.994 0.991 0.991
Weed 0.989 0.995 0.992 0.992 0.994 0.989 0.991 0.991

k4 Turf 0.988 0.992 0.990 0.990 0.986 0.994 0.990 0.990
Weed 0.992 0.988 0.990 0.990 0.994 0.986 0.990 0.990

k5 Turf 0.994 0.994 0.994 0.994 0.989 0.996 0.992 0.992
Weed 0.994 0.994 0.994 0.994 0.996 0.989 0.992 0.992

ResNet k1 Turf 0.998 0.998 0.998 0.998 0.996 0.996 0.996 0.996
Weed 0.998 0.998 0.998 0.998 0.996 0.996 0.996 0.996

k2 Turf 0.996 1.000 0.998 0.998 0.996 0.998 0.997 0.997
Weed 1.000 0.996 0.998 0.998 0.997 0.996 0.997 0.996

k3 Turf 0.997 0.995 0.996 0.996 0.995 0.996 0.996 0.995
Weed 0.995 0.998 0.996 0.996 0.996 0.995 0.996 0.995

k4 Turf 0.996 0.992 0.994 0.994 0.996 0.992 0.994 0.994
Weed 0.993 0.996 0.994 0.994 0.993 0.996 0.994 0.994

k5 Turf 0.994 0.998 0.996 0.996 0.990 1.000 0.995 0.995
Weed 0.997 0.994 0.996 0.995 1.000 0.990 0.995 0.995

TABLE 5. Performance evaluation of weed-coverage estimation neural networks trained on the entire data set

Deep learning architecture Label

Validation data set Testing data set

Precision Recall Overall accuracy F1 score Precision Recall Overall accuracy F1 score

DenseNet Turf 0.998 0.994 0.996 0.996 0.996 0.996 0.996 0.996
Weed 0.994 0.998 0.996 0.996 0.996 0.996 0.996 0.996

GoogLeNet Turf 0.992 0.988 0.990 0.990 0.988 0.994 0.991 0.991
Weed 0.988 0.992 0.990 0.990 0.994 0.988 0.991 0.991

ResNet Turf 0.996 0.994 0.995 0.995 0.992 0.996 0.994 0.994
Weed 0.994 0.996 0.995 0.995 0.996 0.992 0.994 0.994
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spraying volume based on the weed-coverage information
obtained from our approach.

3.4 Inference speed of the image-classification NNs
The inference speed of the image-classification NNs is critical for
real-time weed detection and coverage estimation. The FPS
values of DenseNet, GoogLeNet and ResNet were computed by
averaging the processing time of images from the testing data
set. The WCECs are only created on the WDCs that contained
weeds. Therefore, the theoretical minimum FPS occurs when all
WDCs contain weeds, and all corresponding WCECs require pro-
cessing by the weed-coverage estimation NN. In the current
research effort, we calculated the theoretical minimum FPS by
assuming that 24 WDCs contain weeds and thus require the pro-
cessing of 96 corresponding WCECs. To calculate this value, the
batch size of the weed detection and weed-coverage estimation
NNs was set to 24 and 96, respectively, and the total inference
time of the two NNs was measured (Table 6).
For weed-detection NNs, ResNet, with 87.62 sub-images

(456 × 456 pixels) inferred per second, was 0.96 slower than Goo-
gLeNet, but noticeably faster than DenseNet (51.20 FPS). For
weed-coverage estimation NNs, ResNet and GoogLeNet, with
45.51 and 51.03 sub-images (228 × 228 pixels) inferred per sec-
ond, demonstrated the fastest inference speed and outperformed
DenseNet on computational efficiency. When considering the
overall FPS values, GoogLeNet exhibited the highest FPS value
of 33.33, whereas ResNet and DenseNet had speeds of 29.95
and 20 FPS, respectively. Based on a joint analysis of overall

accuracy, F1 score, and inference speed, ResNet demonstrated
superior accuracy and computational efficiency compared with
GoogLeNet and DenseNet. This competitive result may mainly
come from its unique residual connections allowing deeper and
more efficient NNs. Overall, these results suggested that ResNet
was the most efficient and accurate CNN for turf weed detection
and coverage estimation. Table 7 presents the overall FPS value
for Fig. 3. As illustrated in Fig. 3, there are 15 WDCs containing
weeds, resulting in the processing of 60 WCECs. Therefore, the
batch size of the weed-coverage estimation model was set to
60, yielding an overall FPS value of 35.21 for ResNet. This value
indicates that the ResNet can perform real-time weed detection
and precision herbicide application with high accuracy.

4 DISCUSSION
In this study, each input image was divided into 24 equal-sized
WDCs with a resolution of 456 × 456 pixels. The WDCs were clas-
sified and marked as spraying zones if the inference indicated
they contained weeds. Implementing a subsequent
decision-making system allows only the nozzles linked to those
cells containing weeds to achieve precision herbicide spraying.
In a practical machine vision system, the physical size of theWDCs
should be equal to or slightly smaller than the area covered by a
single nozzle. Therefore, careful consideration must be given to
the size of theWDCs and the distribution of the nozzles to achieve
optimal performance of the system and ensure effective precision
herbicide application.

Figure 3. Weed-detection neural networks (NNs) successfully predicted the grid cells containing purple nutsedge while growing in bermudagrass (red
borders) and bermudagrass only.
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Accurate detection of weeds and estimation of their coverage is
crucial for implementing precision herbicide application, because
it enables the calculation of herbicide requirements and the over-
all cost of weed control. In addition, weed-coverage estimation is
necessary for carrying out variable-rate herbicide treatment. By
accurately detecting the presence of weeds, the system can
adjust the herbicide application rate according to the specific
weed coverage in each WDC (spraying zone). In recent years,
instance segmentation NNs have been extensively used for
weed-coverage estimation by analyzing information at the pixel
level.44,45 This methodology involves the classification of every
pixel in an image as either a weed or non-weed, requiring a sub-
stantial amount of annotated data for training. Moreover, in most
cases, nozzles generate a specific size of spraying outputs, which
presents a challenge in translating the results obtained frompixel-
level analysis to herbicide sprayers. In this study, gird cells were
generated on the input images, and image-classification NNs
were utilized to detect whether the gird cells contained weeds.
By utilizing this strategy, weed detection and coverage estimation
can be achieved as long as the developed NNs can detect the
presence or absence of weeds within each grid cell.
All three NNs, DenseNet, GoogLeNet and ResNet, exhibited high

overall accuracy and F1 scores (≥0.990) in the training and testing
data sets when the NNs were trained with WCECs; however, these
NNs exhibited reduced overall accuracy and F1 scores when
trained with WDCs. Therefore, it can be inferred that the training
image size could affect the reliability of image-classification NNs

for weed detection and coverage estimation. Similar trends were
observed by Yang et al. who reported that increasing training
image sizes from 200 × 200 pixels to 800 × 800 pixels reduced
the weed-detection accuracy in Alfalfa (Medicago sativa L.) for all
DL models evaluated in the study.53 However, Zhuang et al. con-
cluded that increasing the number of training images could
enhance the performance of DCNNs while mitigating the impacts
of training image sizes.54 In this study, diminishing the size of the
WCEC would lead to an elevated level of accuracy in estimating
weed coverage. However, this enhancement comes at the
expense of computational efficiency because it would require
the classification of a larger number of grid images. Additional
research is needed to investigate the implications of training
image quantities and sizes on the performances of NNs for weed
detection and coverage estimation in turf.
The need for high image processing speed is paramount to

enable real-time weed detection and treatment. In automated
weed control systems, actuators are constrained by the limited
time available to process images and execute treatments.55 Inte-
grating these high-speed systems into robotic platforms facili-
tates real-time detection and action, even while the machinery
is in motion. In this study, GoogLeNet and ResNet achieved nota-
ble speeds of 33.33 and 29.95 fps, respectively. These rates repre-
sent the theoretical minimum FPS for scenarios combining weed
detection with coverage estimation tasks. The theoretical mini-
mum FPS is calculated with the assumption that all WDCs contain
weeds and all corresponding WCECs require processing by the

Figure 4. Each weed-detection cell containing weeds (spraying zone) was divided into four weed-coverage estimation cells.
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weed-coverage estimation NN. Weed control algorithms typically
operate on embedded computers for deployment.56 Although
GoogLeNet and ResNet demonstrate potential for real-time weed

detection and coverage estimation, it is critical to assess how
these models perform under the constraints of such embedded
systems, which warrants further investigation.

Figure 5. Results of weed mapping and coverage estimation. Weed-coverage percentage was classified into four levels (25%, 50%, 75%, and 100%)
based on the number of weed-coverage estimation cells containing weeds.

TABLE 6. The inference time of the neural networks and minimum overall frames per second (FPS) of the full image

Deep learning architecture Task Full-image resolution Sub-image resolution Batch size FPS Overall FPS

DenseNet Weed detection 2736 × 1824 456 × 456 24 51.20 20.00
Weed-coverage estimation 228 × 228 96 32.35

GoogLeNet Weed detection 456 × 456 24 88.58 33.33
Weed-coverage estimation 228 × 228 96 51.03

ResNet Weed detection 456 × 456 24 87.62 29.95
Weed-coverage estimation 228 × 228 96 45.51

TABLE 7. The inference time of the neural networks and the frames per second (FPS) of Fig. 3

Deep learning architecture Task Full-image resolution Sub-image resolution Batch size FPS Overall FPS

DenseNet Weed detection 2736 × 1824 456 × 456 24 51.20 23.11
Weed-coverage estimation 228 × 228 60 42.11

GoogLeNet Weed detection 456 × 456 24 88.58 37.79
Weed-coverage estimation 228 × 228 60 65.90

ResNet Weed detection 456 × 456 24 87.62 35.21
Weed-coverage estimation 228 × 228 60 58.88
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It is noteworthy that three classic image-classification NNs, Den-
seNet, GoogLeNet and ResNet, were used to validate the pro-
posed methodology. The experimental results exhibited
excellent outcomes, even using the classical DL models. These
findings suggested the high feasibility of the weed detection
and coverage estimation methods presented in this study. DL
models come in a multitude of types and are evolving rapidly.
We assume that employing state-of-the-art models will further
enhance the accuracy of weed detection and coverage estima-
tion, which warrants future investigation.
It should be noted that this study only evaluated purple

nutsedge growing in bermudagrass turf for weed detection and
coverage estimation. Although the weed detection and weed-
coverage estimation NNs achieved high classification accuracy, a
more diverse training data set that includes a broader range of
weed species is highly desired. Expanding the NNs to have a
greater variety of weed species would be the next step of this
study. Such efforts would help to establish a more comprehensive
and robust CNN that can effectively detect and estimate the cov-
erage of diverse weed populations, thereby promoting precision
herbicide applications.

5 CONCLUSIONS
This research demonstrated the feasibility and reliability of using
image-classification NNs to detect weeds growing in bermuda-
grass turf and estimate their coverage in a grid framework, which
will allow the calculation of herbicide requirements for site-
specific and variable-rate herbicide applications. The developed
weed-detection NNs can effectively detect and discriminate the
grid cells containing the purple nutsedge and the bermudagrass
turf, with overall accuracy and F1 scores exceeding 0.972 in the
testing data sets. The developed weed-estimation NNs can effec-
tively detect and locate the grid cells containing weeds. Among
the evaluated NNs, the DenseNet weed-coverage estimation NN
showed the highest overall accuracy and F1 scores (0.996). The
inference speed of ResNet was similar to GoogLeNet, but notice-
ably faster than DenseNet. ResNet was the most efficient and
accurate image-classification NN for weed detection and cover-
age estimation in turf. This is the first study attempting to detect
and locate weeds and estimate their coverage using image-
classification NNs. The proposed method can be employed in a
machine vision system with an autonomous site-specific spraying
system to achieve precision herbicide application.
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